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RUNNING HEAD: Reward Signature

Abstract
Using a neurometric approach, we identify and validate a neural signature of reward encoded in
a distributed pattern of brain activity using data collected from 21 different studies (N = 2,691).
Our model can discriminate between receiving rewards from punishments in completely
independent data with 99% accuracy and includes weights located in regions containing a high
density of D2/D3 receptors. The model exhibits strong generalizability across a range of tasks
probing reward, and a high degree of specificity for reward compared to non-reward constructs.
We demonstrate several applications of how this model can infer psychological states of positive
affect in the absence of self report. The model is sensitive to changes in brain activity following
causal manipulations of homeostatic states, can uncover individual preferences for
loss-aversion, and can be used to identify positive affective experiences when watching a
television show. Our results suggest that there is a shared neural signature of reward elicited
across these different task contexts.
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Introduction
The survival of an organism depends upon approaching useful resources and avoiding harm.
Positive and negative affective experiences associated with different potential actions can
provide useful internal signals to help the agent form decision policies to successfully navigate
the environment. These subjective psychological states depend upon appraising a situation (1,
2) with respect to an individual’s goals, homeostatic states (3), and past experiences (4).
Theories of emotion emphasize the importance of positive affect in facilitating goal attainment
and reward consumption (5, 6), with such states often arising following appraisals evaluating
that one’s position has improved such as achieving a goal or receiving a better than expected
outcome (7–11), anticipating or forecasting a positive outcome (12, 13), or resolving uncertainty
(14, 15). The neural circuitry involved in the experience and anticipation of reward has been well
studied and associated with dopaminergic neurons located in the midbrain including the ventral
tegmental area and dorsal tier of the substantia nigra (9, 16, 17) that project to the nucleus
accumbens in the ventral striatum (13, 18) and can be gated by the medial prefrontal cortex
(19). Though reliable activations in a network of regions including the midbrain, ventral striatum,
and ventromedial prefrontal cortex (vmPFC) have been identified in meta-analyses (20), there is
currently no pattern of brain activity that can be used to reverse infer the psychological
experience of a subjective state of positive affect (21, 22). Such a model would improve our
understanding about how the brain processes reward and also facilitate inferences about the
internal subjective experience of an individual in the absence of self-report, which could reveal
insights into how humans make decisions and what happens when the positive affect system
goes awry in populations struggling with mental health conditions such as depression, addiction,
and mood dysregulation.

Neurometrics is concerned with assessing the reliability and validity of neural indicators of
psychological states based on the fundamental principles established by the field of
psychometrics (23–26). For example, there is growing evidence that patterns of brain activity
measured using in vivo neuroimaging measurements (e.g., fMRI, EEG, MEG, PET, etc) can
reflect information about an individual’s psychological state (22, 24, 27–30). These patterns can
be trained using machine-learning techniques and validated using the basic principles of
construct validation (31), in which the pattern generalizability can be evaluated to assess
convergence with related psychological states elicited by different tasks and divergence from
unrelated psychological states (24, 26, 32). Leveraging recent large-scale efforts to standardize
neuroimaging data structures (33) to facilitate publicly sharing data (34, 35), it is now possible to
establish a so-called “nomological network”, or how a pattern of one psychological state relates
to brain patterns of other psychological states (23, 24, 31). Once the reliability and validity of a
brain pattern signature has been established, it can be used as an objective marker indicating
the presence or intensity of a psychological state even in the absence of self-report (36). There
is already promising evidence demonstrating the utility of this approach for negative
psychological experiences such as pain (30), vicarious pain (37), negative affect (38), and
stress (39). However, there has been surprisingly little work extending this approach to the
domain of positive affect.
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In this study, we train a multivariate brain pattern of brain activity using data collected as part of
the Human Connectome Project (HCP) (40) in which we classify winning or losing money in a
gambling task (10). We then demonstrate the generalizability of this pattern to a separate
hold-out sample of participants also from the HCP dataset that were never included in the
training of the model, and assess the convergent and divergent validity of the pattern on 17
different datasets probing a wide variety of psychological processes. Finally, we demonstrate
novel applications across 3 additional datasets of how the pattern can detect changes to reward
following the manipulation of homeostatic states using a deprivation study (41), predict
individual choices in a decision-making under uncertainty context (42), and reveal positive affect
when viewing a movie in a naturalistic context (4).

Results

Training reward brain model
We used data from the Delgado gambling task collected by the Human Connectome Project to
train a brain model of reward outcomes (40, 43). In this task, participants (N=490) play a card
guessing game and are asked to guess if a card randomly drawn from a set of [1,9] is more or
less than 5. On reward trials, participants win $1 for being correct, and on loss trials, they lose
$0.50 for being incorrect (10). To ensure incentive compatibility, participants receive a small
payment based on their performance in the game. We randomly selected 80% of the
participants to serve as training data (N=392) and 20% of participants to serve as a separate
hold out test dataset (N=98). A standard univariate GLM was used to perform an initial temporal
data reduction, which created a map of each participant’s average brain response to reward and
punishment trials. We further subtracted the subject mean out of each map and standardized
the data within each image across voxels. We trained a linear Support Vector Machine (SVM) to
classify reward trials from punishment trials using 5-fold cross-validation to estimate the
generalizability of this model to new participants. To determine the accuracy of the model, we
used forced choice tests, which compare the relative spatial similarity of each brain map to the
Reward Model within the same participant using Pearson correlations and then select the map
with the overall highest similarity. We perform inferences over participants by randomly
permuting the order of the images for each participant 10,000 times to generate an empirical
null distribution of forced choice accuracy. Using this approach, our whole-brain Reward Model
was able to accurately discriminate between reward and loss maps with 98% accuracy in
cross-validation, p < 0.001 (Figure 1C).

To establish the face validity of our model, we used a parametric bootstrap procedure to identify
which voxels most reliably contributed to the classification, which involved retraining the model
5,000 times after randomly sampling participants with replacement and thresholding at FDR q <
0.0001 (Figure 1A). This procedure is purely for visualization and not used for spatial feature
selection (44). The pattern of weights learned across these bootstraps exhibited a high degree
of spatial consistency, r=0.93, p < 0.001 (38) and included expected positive weights in the
ventral striatum, dopaminergic midbrain, and ventromedial prefrontal cortex (vmPFC).
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Next, we trained a general whole-brain Reward Model using data from all training participants
(N=392) and evaluated its generalizability to the hold-out test participants (N=98; Figure 1B).
Similar to our cross-validated analyses, we found that this model was able to accurately
discriminate between the reward and punishment outcomes in new participants that were not
involved in training the model (forced-choice accuracy: 99%, p < 0.001, Figure 1B).

One potential issue using a whole brain approach is that the model may learn aspects of the
psychological experience of reward that are specific to the task and do not generalize to other
reward contexts. For example, outcomes in the Delgado card task are presented in the visual
domain, and prior work has indicated that sensory processing may also be modulated by reward
contexts (45–49). Therefore, we also trained a sparse version of the Reward Model by ablating
the influence of regions outside of what is typically considered the “core reward system” using
an inclusion mask created by Neurosynth (28) containing regions found in approximately 14,000
papers that frequently mention the word reward (see supplemental materials). Although this
sparse model contained only 3% of the voxels in the whole brain model (Figure S1), it was able
to accurately discriminate between reward and loss outcomes with 81% accuracy, p < 0.001
when tested in both cross-validation and also on the hold out test dataset. Thus, by virtually
lesioning the model (38), we are able to demonstrate that the cortical regions outside of the
“core reward system” improve the model performance in about 18 out of the 98 participants in
the holdout test sample, which was not statistically significant using a mixed effects logistic
regression Z=1.11, p = 0.27. Although both models perform well, each has its own advantages
and disadvantages. The whole brain model uses information distributed throughout the entire
brain and has the overall highest accuracy. In contrast, the sparse model is less accurate
overall, but is also less likely to be influenced by potential confounds introduced by the task
such as sensory specific effects in sensory cortices. Thus, while our primary analyses focus on
the full Reward Model, there may be situations in which the sparse model can outperform the
full model and so we present data from both for comprehensiveness.
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Figure 1. Reward Model training and validation. Panel A depicts the pattern weights for the
whole-brain Reward Model using the full training dataset (N=392). Positive weights indicate an increased
likelihood of classifying an image as a reward, while negative weights indicate an increased likelihood of
classifying an image as a punishment. We thresholded the map at FDR q < 0.0001 to identify the most
reliable weights using a parametric bootstrap procedure. Panel B depicts the results of the forced choice
accuracy tests on the separate holdout dataset (N=98). The x-axis indicates the pattern similarity to the
Reward Model and each line represents a single test subject. Light blue dots indicate the reward condition
while dark blue dots indicate the punishment condition. Panel C depicts the receiver operator
characteristic curves for testing the Reward Model in cross-validation within the training dataset (red line)
and on the separate holdout dataset (navy line).

Convergent Validity
In order to demonstrate that the Reward Model is capturing the psychological state of reward,
we sought to establish that it has convergent validity with reward states elicited by different
tasks. We used the same forced choice accuracy validation procedure described in the model
training section, which involves computing the pattern similarity between the Reward Model and
the target and control conditions separately for each participant. If the model generalizes to
other contexts, we predict that the target condition will be relatively more similar to the Reward
Model compared to the control condition. This means that the model has conceptual overlap in
the psychological processes associated with reward in the target compared to the control
condition. If there is no difference between the two conditions, or if the Reward Model is more
similar to the control condition, then we establish that the Reward Model does not generalize to
this particular context.
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First, we evaluated the spatial similarity of the Reward Model with the known spatial distribution
of dopamine receptors. We used maps from the Neurosynth gene project (50, 51) that are
based on gene expression values derived from transcriptome-wide microarray assessments of
brain tissue collected from 3,702 samples across 6 human donors provided by the Allen Human
Brain Atlas (52). The Reward Model was most similar to the spatial distribution of gene
expression values for D3 (r = 0.1), D2 (r=0.08), and D1 (r=0.04) receptors, but not D4 (r=-0.04)
or D5 (-0.02) receptors (Figure 2A). Consistent with these results, we also found that the
Reward Model correlated significantly with spatial patterns of D2-like receptor availability from
participants (N=25) that underwent positron emission tomography scans (PET) using the high
affinity D2/D3 receptor tracer [18F] fallypride, average r=0.1, p < 0.001 permuted (53) (Figure
2B). These results provide converging evidence that the weights learned by the Reward Model
have a spatial pattern that overlaps with the spatial distribution of the density of D2/D3
receptors.

Second, we assessed how well our whole-brain model of reward generalizes to other tasks
designed to elicit reward. The monetary incentive delay task (MID) is among the most widely
used tasks to study the anticipation and receipt of rewards (13). In this task, participants receive
a cue indicating how much money they can win or lose if they successfully press the button
before the target offset. The time viewing the cue before the target is presented provides a
window into reward anticipation and the outcome period reveals how much money the
participant won or lost. This task has been reliably associated with positive anticipation (54) and
has been used as a marker of individual differences in reward processing (55). We found that
our Reward Model successfully generalized to reward anticipation and outcomes across two
variants of the MID task. Our Reward Model classified reward from neutral anticipation in a MID
dataset collected at Vanderbilt (53) with 84% accuracy, p < 0.001, and successful from
unsuccessful outcomes with 94% accuracy, p < 0.001. In addition, the model discriminated
between reward anticipation from neutral anticipation with 100% accuracy, p < 0.001 in a
different MID dataset collected at MIT (41) (Figure 2C).

Third, we examined if the Reward Model generalizes to receiving rewards in social contexts. In
one study, participants play a card guessing game with shared monetary outcomes with three
different partners: a friend, stranger, and computer (56). Our Reward Model was able to
successfully discriminate between outcomes of receiving rewards compared to punishments
with 90% accuracy, p < 0.001, but was unable to significantly discriminate between rewards
shared with friends or strangers compared to computers, accuracy=0.65, p = 0.14. We observed
a similar pattern of results in a trust game (57). In this study, participants made decisions to
invest a $1 endowment in a relationship partner (i.e., friend or stranger), which is multiplied by a
factor of 3 by the experimenter. The relationship partner then decides to either keep the $3
multiplied investment amount or return $1.5 back to the trustee (57). We found that our Reward
Model was able to accurately discriminate between when participants learned that their
relationship partner reciprocated their trust compared to defected with 81% accuracy, p = 0.001,
but was unable to discriminate between when friends and strangers reciprocated compared to
computers, accuracy=46%, p = 0.74 (Figure 2C). This suggests that our model successfully
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generalizes to social contexts involving winning and losing money, but does not appear to be
sensitive to detecting with whom rewards are shared (i.e., friend compared to a computer).

Fourth, we assessed if the Reward Model generalizes to reward experiences generated from
sensory modalities beyond vision. We used two independent datasets to assess how well the
Reward Model could discriminate between tasting sweet drinks. In the milkshake dataset (58),
adolescents viewed cues of glasses of a milkshake or water that signaled the impending
delivery of either a 0.5ml of a chocolate milkshake or a tasteless solution. We found that the
Reward Model was able to successfully discriminate between the milkshake and control visual
cues, accuracy=67%, p < 0.001, but was unable to discriminate between the delivery of the
milkshake compared to the tasteless solution, accuracy=48%, p = 0.71 (Figure 2C). In the sweet
taste dataset, participants tasted 1ml of different drinks that were matched on sweetness using
sucralose, but varied in the caloric loads by adding maltodextrin (59). This allowed us to assess
the sensitivity of the model to experimentally manipulated carbohydrate reward. We assessed
how well the Reward Model could discriminate between tasting juices matched on sweetness
with 75 calories compared to 0 calories, which was shown to be associated with ventral striatal
activity in the original paper (59). Consistent with the milkshake tests, our reward whole-brain
model did not appear to generalize to tasting sweet drinks varying in caloric content, accuracy =
53%, p = 0.5 (Figure 2C). One possible explanation of these null findings is that weights in
sensory cortex (e.g., occipital and insular cortex) may have been obfuscating the predictions of
the model. Consistent with this hypothesis, we found that our sparse Reward Model was able to
successfully discriminate between observing cues of milkshakes and water, accuracy=61%, p =
0.006, and also tasting the milkshake compared to a tasteless solution, accuracy=65%, p <
0.001 (Figure S2C). Similar results were found for the sweet taste dataset, but only approached
significance, accuracy=73%, p = 0.06 (Figure 2C). These results indicate that our sparse model,
which relies on areas in subcortex and the midbrain thought to be involved in core reward
processing appears to be sensitive to rewards elicited from multiple sensory modalities, while
our whole brain model only appears to be sensitive to detecting rewards delivered in a visual
task context.

Together, this pattern of results indicates that the Reward Model exhibits strong convergent
validity across a variety of tasks designed to elicit reward. The weights in the model include
positive weights in regions known to contain high densities of D2/D3 dopamine receptors. The
psychological processes captured by the model appear to be common in anticipating and
receiving positive outcomes in a multitude of task contexts including social contexts. The whole
brain model does not appear to generalize to rewards delivered in modalities beyond vision, but
the sparse model can detect gustative rewards such as tasting sweet and moderately high
calorie drinks (see Table S1 for full results of sparse model).
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Figure 2. Construct Validity. A) Spatial similarity of the Reward Model with dopamine receptor gene
expression derived from transcriptome-wide microarray assessments of brain tissue collected from 3,702
samples across 6 human donors provided by the Allen Human Brain Atlas. Values indicate Pearson
correlation coefficients. B) Spatial similarity of the D2/D3 receptor availability from participants (N=25) that
underwent positron emission tomography scans (PET) using the high affinity D2-like receptor tracer
[18F]fallypride. C) Convergent validity of the Reward Model in discriminating between the reward and no
reward contrasts from multiple studies. Red values are all contrasts between conditions in which
participants receive a monetary outcome compared to nothing or losing money. Pink values indicate

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 24, 2022. ; https://doi.org/10.1101/2022.08.23.504939doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.23.504939
http://creativecommons.org/licenses/by-nc-nd/4.0/


RUNNING HEAD: Reward Signature

contrasts in which participants receive other types of rewards such as social or tasting sweet drinks.
Statistical significance of p < 0.001 is indicated by ***. D) Divergent validity of the Reward Model in
discriminating between contrasts from multiple studies. Navy values depict accuracy from risky vs safe
contrasts from studies using the BART task and social and non-social contrasts. Medium blue values
indicate accuracy values from negative affect studies. Light blue values indicate contrasts probing more
traditional cognitive faculties such as language, working memory, and cognitive control.

Discriminant Validity
The next step in establishing construct validity of a model is to demonstrate discriminant validity
(31). We hypothesized that the Reward Model should be unable to discriminate between
conditions when psychological states become more distant from the experience of reward. We
therefore used the same validation procedure on several other datasets that are publicly shared
on OpenNeuro (34) and Neurovault (35).

First, we explored if the Reward Model was sensitive to risk and uncertainty. Making decisions
requires simultaneously considering many possible uncertain consequences associated with
each choice, such as the anticipated benefits and costs. Decision-making models, such as
expected value, attempt to approximate the total anticipated value of each choice option by
scaling each benefit/cost by the likelihood of realizing these outcomes and adding them all up.
This makes it easy to figure out which choice has the overall highest expected value. Prior work
has found evidence that the same regions (e.g., ventral striatum) appear to encode information
pertaining both to the reward and the uncertainty or risk (60, 61), while other work has found
that these processes may be processed in distinct regions of the brain (e.g., ventral striatum vs
insula) (62, 63). Here we sought to evaluate if the Reward Model also captured aspects of the
experience of uncertainty or risk using the Balloon Analog Risk task (BART), a widely used
paradigm to measure risk-taking behavior (64, 65). In the version of the task analyzed here,
participants are presented a series of colorful (the risk condition) or achromatic balloons (the
safety or control condition) and are instructed to inflate the balloons. In the risk condition,
participants can choose to inflate a balloon and only receive a reward if the balloon does not
explode. However, each inflation is associated with an increasing probability of explosion, and
when the balloon explodes, participants do not receive a reward for that round (64, 65). In
contrast, in the safety condition, participants are also instructed to inflate a series of balloons,
but there is no risk of the balloons exploding, nor an opportunity to receive a reward. Consistent
with our results described above, we found that the Reward Model was able to accurately
discriminate between reward outcomes, such as whether the participant received money from
successfully inflating the balloon or lost if the balloon exploded, accuracy=77%, p < 0.001.
However, the model was unable to discriminate between risky from safe decision contexts,
accuracy = 0.49%, p < 0.6, indicating that the model does not appear to be sensitive to risk or
uncertainty.

Second, we examined if the Reward Model could discriminate between tasks that involve social
cognition. Overall, we found that the Reward Model exhibited discriminant validity by not
generalizing to a variety of social-cognitive processes. The Reward Model was unable to
discriminate between social vs control conditions from the HCP social cognition task in which
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participants viewed animate shapes that exhibited biological motion by moving in a way that
conveyed social interactions compared to conditions where the same shapes moved randomly
(66, 67), accuracy= 50%, p = 0.59. Furthermore, the Reward Model appeared to be unrelated to
self-referential processing, as it was unable to discriminate between thinking about one’s own
preferences compared to a control condition in which participants were asked to make a
perceptual judgment about the properties of a font (68, 69), accuracy = 0.15, p = 1.

Third, we examined if the Reward Model was sensitive to arousal by testing its ability to
discriminate between tasks that elicit negative affect such as pain. The Reward Model was
unable to discriminate between conditions in which participants experienced high and low
intensities of thermal stimulation applied to their arms or legs, accuracy=54%, p = 0.43 (37).
However, the model was able to modestly discriminate between viewing arousing negative
images compared to neutral images selected from the International Affective Pictures System
(IAPS), accuracy = 67%, p < 0.001 (38). Interestingly, the sparse model exhibited more
specificity in this context, accuracy = 43%, p = 0.93, suggesting that the whole brain model’s
ability to discriminate negative arousing from neutral images may be driven by weights in visual
and prefrontal cortices consistent with increases in visual attention in affectively arousing
contexts (48, 49, 70).

Fourth, we assessed if our Reward Model could discriminate between tasks designed to elicit
different aspects of cognition including, language, working memory, and cognitive control. We
used several tasks from the Human Connectome Project. In the HCP language task, the
Reward Model was unable to discriminate between reading short stories compared to
completing arithmetic problems, accuracy = 10%, p = 1.0. The Reward Model was also unable
to discriminate between increasing levels of working memory in an n-back task (2 back vs 0
back), accuracy = 28%, p = 1.0. Nor was it able to discriminate between levels of cognitive
control using a stop signal task, accuracy = 47%, p = 0.68 (71).

Together, this pattern of results demonstrate specificity of the Reward Model in revealing
psychological states associated with positive affect. The model finds little evidence of overlap
between the psychological state of the reward captured in the Delgado card task with a variety
of other psychological states spanning a range of cognitive, social, and affective processes. One
notable exception is that the whole-brain model, but not the sparse Reward Model predicted a
reward response when viewing negatively arousing images (see Table S1 for full results of
sparse model). This indicates that the Reward Model is capturing some information that is
common to both rewarding and negative experiences elicited by visual paradigms, likely
reflected in visual cortex model weights.

Applications of the Reward Model
Having now established the convergent and discriminant validity of the Reward Model, we next
were interested in evaluating how we might use the model in novel ways. One of the promises
of brain imaging is to reveal insights into the mind in the absence of explicit self-report. We
provide several demonstrations of how this brain model might be used to understand the
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psychological and neural foundations of reward. First, we demonstrate that the model is
sensitive to detecting changes in the rewarding value of viewing static images following causal
manipulations of homeostatic states using a deprivation paradigm (41). Next, we show that the
Reward Model can be applied to uncover participants’ subjective preferences by predicting their
decisions in a mixed gambling context (42). Finally, we demonstrate how the model can be used
to infer psychological states based purely on brain activity while participants engage in a natural
viewing paradigm (4).

Homeostatic State Manipulation
One interesting aspect of reward is that it is based on an individual’s subjective appraisals with
respect to their goals, past experiences, and current homeostatic states. To this end, we applied
the Reward Model to assess its sensitivity to changes in the subjective value of an image
following a change in participants’ homeostatic states induced by a deprivation manipulation
(41). In this study, participants were scanned across three separate sessions in which they
viewed pictures of people (social condition), pictures of food (food condition), and pictures of
flowers (control condition). In one scanning session, participants underwent social isolation and
were alone in a room unable to communicate with another individual for 10 hours (but were able
to eat as much as they wanted). In a separate scanning session, participants were
food-deprived and were unable to eat for 10 hours prior to the scanning session (but were able
to socialize as much as they wanted). We tested our Reward Model using the two deprivation
scanning sessions and found that the Reward Model successfully discriminated between social
and baseline images when socially isolated, accuracy = 87%, p < 0.001, and approached
significance discriminating between social and food images, accuracy = 63% p = 0.1. When
participants were deprived of food, the Reward Model successfully discriminated between food
and baseline images, accuracy = 83%, p < 0.001 and also social images, accuracy=77%, p =
0.002 (Figure 3A). An even stronger test of the model is to discriminate viewing the exact same
images following deprivation across sessions. Here we find that the Reward Model is unable to
discriminate between social images viewed during the social isolation compared to when
viewing them during the food deprivation sessions, accuracy=47%, p = 0.71. However, the model
was able to successfully discriminate between viewing food images during the food deprivation
session compared to the social isolation session, accuracy=70%, p = 0.022. Together, these results
suggest that the Reward Model is sensitive to subtle changes in subjective valuation of images
depicting social interactions or food induced by an acute deprivation.

Estimating Loss Aversion
Next, we sought to test the ability of the Reward Model to reveal an individual’s subjective
preferences in the context of a mixed gamble task. We used an open dataset, in which
participants (n=16) were asked to decide whether to accept or reject mixed gambles that varied
in potential gains or losses (42). Using a mixed effects logistic regression, we successfully
replicated the behavioral results reported in the original paper. Participants were more likely to
accept a gamble as the potential gain increased, = 0.43, se = 0.08, p < 0.001, and less
likely to accept as the potential loss increased, = -0.72, se = 0.07, p < 0.001. Next, we
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were interested if we could find similar results derived purely from brain activity using our
Reward Model. For each participant, we estimated a single trial first-level GLM to generate brain
maps to each gamble, and computed the spatial similarity with our Reward Model to assess the
predicted reward values to each trial. We used a mixed effects regression to estimate the
influence of the potential gain and loss amounts on the predicted reward responses and
observed that independently varying losses ( = -0.02, se = 0.004, p < 0.001), but not
necessarily gains ( = 0.003, se = 0.002, p = 0.22) significantly predicted neural reward
responses (Figure 3B). Though our Reward Model was not able to reliably independently parse
gain from loss signals (perhaps because it was originally trained to discriminate between
rewards and losses), the model was able to significantly predict participants’ trial-to-trial
decisions to accept or reject a gamble, = 6.87, se = 2.07, p < 0.001 (Figure 3B). Moreover, a
forced choice accuracy test averaging over trials within each participant revealed that the
Reward Model was highly accurate in classifying participants’ decisions to accept or reject the
gamble (accuracy=94%, p < 0.001). Finally, we assessed how well we could estimate a
participant’s subjective loss-aversion preferences using a linear model of prospect theory
(42), where and are estimated from a mixed effects regression,

, and . We observed a significant positive
relationship between participants’ subjective loss-aversion preferences estimated from their
decisions and also purely from their brain activity based on the trial-to-trial predictions of the
Reward Model, = 0.48, p = 0.03 permuted (Figure 3C).
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Figure 3. Reward Model Applications. A) the average pattern similarity of the Reward Model with each
participants’ average response to viewing images across different homeostatic state manipulations (41).
B) the average pattern similarity of the Reward Model to viewing mixed gambles conditioning on
participants’ individual decisions to accept or reject the gamble (42). C) Relationship between
loss-aversion parameter estimated from both participants’ decisions and their neural activity predicted by
Reward Model. Units are in ranks to correspond to our Spearman analysis. D) Red line depicts the
average Reward Model pattern similarity to passively viewing the final football scene from the pilot
episode of Friday Night Lights (4) error bars reflect 95% confidence intervials. Dotted dark gray lines
indicate the outcome of each play. Blue line depicts the average predictions of the cross-validated facial
expression model trained to predict the Reward Model pattern similarity. Screenshots of each scene are
copyright of NBCUniversal, LLC. E) Facial expression model that best predicts the pattern similarity of the
Reward Model from the fMRI study. The color intensities indicate how much each facial action unit (AU)
contributes to the time-series prediction. Weights are normalized between [0,1] for display purposes.

Uncertainty resolution during movie watching
As a final application of the Reward Model, we sought to assess how well it could uncover an
individual’s subjective experience during a passive viewing context. While all of the previous
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tests used tasks designed to probe a specific psychological process, movie viewing tasks vary
in many dimensions simultaneously and provide a rich testbed for evaluating the generalizability
of a model. Unfortunately, it is difficult to annotate a movie on all psychological dimensions, and
participants also tend to display more individual variability compared to traditional tasks (4, 72,
73). In this dataset, participants (N=35) watched the 45-minute pilot episode of a character
driven television drama, Friday Night Lights (4). We applied the Reward Model to participants’
timeseries while they watched the movie and specifically examined the predictions of the model
to a sequence of dramatized plays in a 3.5 minute clip at the climax of the episode, in which the
backup quarterback leads the team to an unexpected victory. This sequence of scenes provides
a particularly interesting test of the model as there are multiple events that elicit a high level of
uncertainty (e.g., will the receiver catch the ball?) before the outcome is revealed (Figure 3D). In
this short clip, at the end of the episode, the backup quarterback receives a pep talk from his
coach during a time out (A), then makes a successful handoff to a running back (C), which then
leads to scoring a touchdown (D). With only minutes left in the game, the team makes a risky
onside kick, and is able to successfully recover the ball in a turnover (E). With less than a
minute left, the backup quarterback makes a successful pass and the receiver steps out of
bounds to stop the clock, saving precious seconds (F). In the final play of the game, the
quarterback almost falls following the snap (G), then successfully evades a tackle (H), and
throws a very long pass (I), which is eventually caught and leads to the game winning
touchdown (J). A common technique to assess the reliability of a signal across participants in
naturalistic designs is to compute the intersubject correlation (74, 75). Here, we examine the
temporal dynamics of the Reward Model pattern similarity across participants and observed a
high degree of consistency during this short sequence (temporal ISC = 0.31, 95% CI =
0.29-0.36, p < 0.001), which was comparable to the temporal ISC across the entire episode
(ISC = 0.35, 95% CI=0.32-0.40, p < 0.001) and also to the amount of temporal synchronization
we observed in early visual cortex across participants (ISC = 0.33, 95% CI=0.28-0.40, p <
0.001), which is a region that tends to exhibit the highest degree of intersubject synchronization
across the entire brain (4, 74). These results indicate that the Reward Model is capturing a
reliable signal across participants corresponding to the resolution of the uncertainty of each
event consistent with the protagonists triumphing in the game. However, this does not
necessarily mean that the model is capturing psychological processes associated with reward,
which would require additional information about how the participants were feeling while the
narrative unfolded.

To gain further insight into the psychological processes being captured by the model, we used
an additional behavioral dataset to decode the affective experience captured by the Reward
Model. In this dataset, a different sample of participants (N=20) watched the same television
episode while their facial expressions were video recorded (4, 76). We used a computer vision
algorithm to automatically identify the temporal dynamics of 20 facial action units (AUs), which
represent a standardized system to describe the intensity of facial movements (77, 78) at each
frame of the video. We then used the normalized averaged time series of each AU across this
sample to predict the temporal dynamics of the Reward Model pattern similarity to the fMRI data
described above during the sequence of scenes using linear regression with 5-fold
cross-validation. Overall, we found that the face model was able to accurately predict the
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Reward Model pattern response during this sequence of football plays in new participants,
mean = 0.39, sd = 0.12, p < 0.001 permuted. Consistent with our hypotheses, the learned
face expression reflects a behavioral demonstration of a positive affective experience of
anticipation (Figure 3E) with the largest increases in AU14 (Buccinator, dimpler), AU9 (Levator
labii superioris alaquae nasi, nose wrinkler), and AU25 (Depressor Labii, lips parting),
demonstrating the potential of these models for supplanting self-report.

Study Contrast Sample
Size

Pattern
Similarity

(SD)

Accuracy p-value

HCP Reward Test Reward vs Punish 98 0.04 (0.02) 0.99 0.0001

MIT MID Reward vs Neutral 29 0.08 (0.04) 1.0 0.0001

Vanderbilt MID Reward vs Neutral
Anticipation

70 0.03 (0.03) 0.86 0.0001

Vanderbilt MID Hit vs Miss Outcome 70 -0.02
(0.05)

0.94 0.0001

Rutgers Social
Reward

Reward vs Punish 20 0.04 (0.03) 0.90 0.0002

Rutgers Social
Reward

Friend + Stranger
Reward vs Computer
Reward

20 0.01 (0.04 0.65 0.137

Rutgers Trust Reciprocate vs Defect 26 0.03 (0.02) 0.92 0.0001

Rutgers Trust Friend + Stranger
Reciprocate vs
Computer Reciprocate

24 0.00 (0.03) 0.46 0.718

Neurosynth Gene D1 - Gene Expression
Similarity

6 0.04

Neurosynth Gene D2 - Gene Expression
Similarity

6 0.08

Neurosynth Gene D3 - Gene Expression
Similarity

6 0.10

Neurosynth Gene D4 - Gene Expression
Similarity

6 -0.04

Neurosynth Gene D5 - Gene Expression
Similarity

6 -0.02
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Vanderbilt
Fallypride

D2-like Binding
Similarity

25 0.1 (0.007) 0.0002

Sweet Taste Calorie 75 vs Calorie 0 15 -0.00
(0.05)

0.53 0.503

Milkshake Milkshake Cue vs
Water Cue

160 0.02 (0.05) 0.67 0.0001

Milkshake Milkshake Receipt vs
Water Receipt

160 -0.01(0.05) 0.48 0.706

UCLA BART Cash vs Explode 124 0.05 (0.06) 0.77 0.0001

UCLA BART Risky vs Safe 124 0.01 (0.05) 0.49 0.60

HCP Social Social vs Control 484 -0.00
(0.02)

0.5 0.583

Self Referential Self vs Font 27 -0.03
(0.03)

0.19 1

Boulder Pain High vs Low 28 0.01 (0.05) 0.54 0.432

Pittsburgh IAPS Negative vs Neutral 93 0.02 (0.04) 0.68 0.0006

HCP Language Story vs Math 482 -0.02
(0.02)

0.098 1.0

HCP Working
Memory

2 Back vs 0 Back 493 -0.01
(0.02)

0.28 1.0

Stop Signal Success vs Fail 19 -0.01
(0.05)

0.47 0.678

MIT Deprivation Social Deprivation -
Social vs Baseline

30 0.03 (0.03) 0.87 0.0001

MIT Deprivation Social Deprivation -
Social vs Food

30 0.01 (0.04) 0.63 0.10

MIT Deprivation Food Deprivation -Food
vs Baseline

30 0.03 (0.03) 0.83 0.0001

MIT Deprivation Food Deprivation -
Food vs Social

30 0.02 (0.03) 0.77 0.003
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Mixed Gamble Accept vs Reject 16 0.94 0.0002

Friday Night Lights Temporal ISC 35 0.35τ 0.0002

Table 1. Convergent and Discriminant Validity of Reward Signature. τindicates temporal
intersubject correlation (ISC). See Table S1 for Sparse Reward model results

Discussion
In this study, we develop and validate a neural signature of reward using whole-brain
multivariate pattern analysis using publicly shared data from 21 different studies (combined N =
2,691 participants). We find that a linear model trained on a large gambling dataset collected as
part of the Human Connectome Project (40) is able to discriminate between outcomes where
new participants won money compared to lost money with 99% accuracy (10). This multivariate
pattern exhibits strong generalizability across participants, scanners, and tasks probing reward.
Moreover, the weights that contribute most to the model's predictions are located in regions that
have previously been associated with a high density of D2/D3 receptors suggesting a possible
connection to dopaminergic activity. The Reward Model also shows a high degree of specificity
to reward relative to psychological constructs unrelated to reward across a range of cognitive
and affect processes such as risk, working memory, cognitive control, language, social
cognition, and pain. We further demonstrate several potential applications of how this model
might be used as a method to infer psychological states of positive affect in the absence of self
report. The model is sensitive to subtle changes in the positive affective experience following a
causal manipulation of homeostatic states using a deprivation paradigm. The model is also able
to accurately predict participants’ decisions in a mixed-gambling task and can be used to
estimate individual participants’ subjective loss-aversion preferences. Finally, the model can be
used to identify positive affective experiences when watching a television show in the scanner.

Using a neurometric approach to evaluate the construct validity of this model provides unique
insights into the construct of reward. Though the concept of reward is central to many
disciplines ranging from economics to neuroscience, its ubiquity belies its complexity. Our model
was designed to capture the psychological experience of reward elicited in the context of
winning a gamble and measured using BOLD fMRI. It generalizes extremely well to other tasks
that share a similar structure that includes a visual presentation of states of the task, and the
resolution of uncertainty with a positive outcome (7–11). These positive outcomes can include
winning money, finding out that you were correct about something, or watching your favorite
team win a game. The model also seems to capture the psychological state of anticipating an
imminent favorable outcome (12, 13) such as winning a gamble, or knowing you are about to
get a sip of a tasty drink. The reward processes captured by the model are not inherently tied to
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a particular state of the world or outcome, but rather to an individual’s appraisal of the subjective
meaning of the event at a specific place and time. These appraisals are malleable and can be
changed when the agent pursues different goals, which can be altered by fluctuations in internal
homeostatic states (4). We find that viewing stimuli associated with basic needs such as food or
social interactions is predicted by the model to be more rewarding when you have been
deprived of these needs (3, 41). Furthermore, individuals do not necessarily value the same
things. For example, variations in individual sensitivity to prospects of gains relative to losses, a
phenomenon known as loss aversion (42, 79), has traditionally been identified based on
decision behavior. Here we show that loss aversion preferences can be estimated purely from
patterns of brain activity when contemplating a gamble using our Reward Model.

Interestingly, the full whole-brain Reward Model did not perform as well in contexts that
dramatically differed from the original training context. Tasting sweet drinks may be perceived as
rewarding (58, 59), but our model was confused when the experience was elicited via gustative
rather than visual input. It is possible that these other areas are providing information that is not
directly related to reward. For example, we also found that the whole-brain model predicted that
viewing negative aversive images was rewarding, but the sparse model did not make this
mistake. One possible explanation is that inputs from sensory and prefrontal cortex may be
capturing processes associated with visual attention that are present in both positive and
negative affective states (45, 46, 48, 49, 70). Another possibility is that these connections with
other cortical regions may contextualize the rewarding experience, which could create a wider
range of positive affective experiences than can be captured by the sparse Reward Model. This
suggests that ongoing arguments in the field about whether the brain represents different types
of value signals as a common currency (80, 81) may not be able to be resolved from simply
examining overlapping activity in the striatum; interactions between regions may contribute
additional nuance. Moreover, it is highly likely that BOLD fMRI itself does not have enough
temporal or spatial sensitivity to detect such differences. For example, there is evidence that
distinct neurons in adjacent regions of the striatum in non-human primates independently track
social and non-social rewards (82), rewards to self and others (83), and approach and
avoidance motivation (84).

Although this paper provides a wide range of tests supporting the sensitivity, specificity, and
generalizability of our model, there are a number of limitations that are important to
acknowledge. First, these tasks only represent a fraction of the types of rewarding experiences
that are likely possible. These tasks are easy to run in the scanning environment, but cover a
very limited scope of possible rewarding experiences. Moreover, the structure of our validation
procedure precluded more nuanced methods of inferring rewarding experiences that might
leverage individual differences or subjective experiences of reward measured via self-report.
Though we used popular tasks that have been previously shown to elicit reliable findings, none
have undergone rigorous neurometric testing to assess the overlap in the potential
psychological processes elicited. Second, we do not view this model as the end goal, but rather
the beginning of a prolonged process of refining the model and continuing to assess its
sensitivity and specificity as more datasets become available. These results merely provide an
initial benchmark, which we hope will be improved upon by other groups. We made numerous
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assumptions to make this work tractable such as assuming linearity and that information could
be contained in averaged activity within independent voxels distributed throughout the brain. Of
course different feature selection approaches, and looking at interactions between regions,
along with assuming more complicated nonlinear functions will likely surpass our model in terms
of its generalizability, but also in helping us improve our understanding of how the brain
represents reward. For example, we trained our model using a single task using a linear
shallow-learning approach. Combining all of the reward contexts and more powerful
deep-learning models will likely facilitate learning richer representations of reward.

One of the promises of in vivo neuroimaging is to accelerate learning about the functional
organization of the brain and the neurobiological basis of psychological processes. In this paper,
we develop and validate a model of positive affect based purely on patterns of brain activity that
can objectively quantify subjective experiences of reward in the absence of self-report. This
model may be of broad interest to facilitate new directions in studying social and affective
processes (24). For example, does the neural representation of reward change across
development? Perhaps patterns of different rewarding experiences are more distinct earlier and
become more similar as we grow older? In addition, this model may provide further insights into
the nature of impairment in the multiple psychiatric disorders in which alterations in reward
processes figure prominently. In this context, individual deviations from a “canonical” Reward
Model could provide useful treatment planning information. For example, measuring an
individual's reward signature over time could provide a means of tracking the effect of clinical
interventions and should have an advantage in that it may be less sensitive to placebo effects
and participant bias than conscious self-reports of mood. We openly share both the whole-brain
and the sparse Reward Models and recommend that these models be used interchangeably
depending on the researcher’s goals. This paper builds on an enormous amount of work over
the past thirty years that required refining imaging acquisition, preprocessing, and analytic
techniques. In addition, it leverages large concerted efforts to standardize how neuroimaging
data is represented and reported (33) and also open source tools to share and access this work
(28, 35, 85), as well as a strong commitment by the broader neuroimaging community to curate
and openly share their data to facilitate secondary data analyses (86). We hope that this model
of reward and the neurometric approach outlined in the paper will in turn help facilitate new
ways to study the brain to accelerate the pace of discovery.

Methods

Datasets

HCP Delgado Gambling Task
The primary dataset we used to train the Reward Model is the Delgado gambling task (10)
collected as part of the Human Connectome Project (40, 43). In this task, participants (N=491,
mean age = 29.24, 59% female) play a card guessing game and are asked to guess if a card
randomly drawn from a set of [1,9] is more or less than 5. On reward trials, participants win $1

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 24, 2022. ; https://doi.org/10.1101/2022.08.23.504939doi: bioRxiv preprint 

https://paperpile.com/c/JWEwig/PYzE
https://paperpile.com/c/JWEwig/rEn1
https://paperpile.com/c/JWEwig/SO1i+NE7w+I8rZ
https://paperpile.com/c/JWEwig/HXHr
https://paperpile.com/c/JWEwig/jzPj
https://paperpile.com/c/JWEwig/ycMo+HAqJ
https://doi.org/10.1101/2022.08.23.504939
http://creativecommons.org/licenses/by-nc-nd/4.0/


RUNNING HEAD: Reward Signature

for being correct, and on loss trials, they lose $0.50 for being incorrect (10). To ensure incentive
compatibility, participants receive a small payment for what they believe is based on their
performance in the game. All participants provided informed consent in accordance with
protocols approved at Washington University. The HCP acquired fMRI data on a Siemens Skyra
3T scanner using a gradient-echo echo planar imaging (EPI) sequence with a multiband
acceleration factor of 8 (TR=720ms, TE=33.1ms, flip angle=52°, FOV 208 x 180mm, matrix
size=104 x 90, voxel size= 2 x 2 x 2). Data were preprocessed according to the minimal
preprocessing HCP fMRIVolume pipeline (87), which includes removing spatial distortions via
gradient unwarping and fieldmap-based distortion correction, realignment, and spatially
normalizing the data to MNI space using a brain-boundary-based registration and nonlinear
transformation implemented via FSL. In addition, the data were temporally filtered using a
Gaussian-weighted linear highpass filter with a cutoff of 200s, and prewhitened using FILM to
correct for temporal autocorrelation. First level models were run using FSL and included boxcar
regressors for each experimental condition convolved with a double gamma canonical
hemodynamic response function (HRF), and temporal derivatives of these regressors to account
for variability in HRF delays. Data were smoothed with a 4mm Gaussian kernel. The beta
estimates for the average response to each condition were accessed via the OpenAccess AWS
S3 bucket provided by the HCP (https://www.humanconnectome.org/). We note that in the
original analyses reported by the HCP, there were no regions with activations greater than a
z-threshold of 1.96 in at least 50% of the sample in the reward vs punishment comparison,
indicating substantial individual heterogeneity in this dataset and low temporal signal to noise
ratio (tSNR) in the striatum and orbitofrontal cortex (OFC) (40).

MIT Monetary Incentive Delay
In this study, participants (N = 29, mean age=26.9, sd=5.8, females=76%) completed a
monetary incentive delay (MID) task as a functional localizer during the baseline condition of a
social isolation experiment (41). The task was adapted from (88) and all participants provided
informed consent in accordance with an approved protocol by the MIT Institutional Review
Board. Before beginning the task, participants memorized a set of 5 images depicting abstract
art (all images taken from the free stock pictures site (https://www.pexels.com/)). During the
task, the abstract art images served as cues to the condition of the current trial. The task had
two conditions: a reward/loss condition (reward) in which participants could earn or lose money
depending on whether their responses were correct and fast enough, and a non-reward
condition (non-reward) in which participants always received $0 regardless of their response.
Each trial started with an abstract art image. The previously memorized (familiar) images
indicated a non-reward trial. Abstract art images that were not previously observed (novel)
indicated a reward trial. After the cue, participants saw a number between 1-9 (excluding 5) for
100ms on the screen. Their task was to press an assigned button indicating whether the
number is below or above 5 as fast as possible. Initially, correct responses were required in less
than 500ms; after 10 consecutive correct answers, this window was reduced to 400ms. After
they pressed the button, participants saw the outcome indicating whether they won $1 (reward
trial, correct response, fast enough), lost $0.20 (reward trial, wrong response or too slow), or
received $0 (non-reward trial). In total, participants played 80 trials (40 trials per condition) and
the duration of the task was approximately 10 minutes. In this dataset, we were only able to

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 24, 2022. ; https://doi.org/10.1101/2022.08.23.504939doi: bioRxiv preprint 

https://paperpile.com/c/JWEwig/jzPj
https://paperpile.com/c/JWEwig/TE84J
https://www.humanconnectome.org/
https://paperpile.com/c/JWEwig/HAqJ
https://paperpile.com/c/JWEwig/9mwo
https://paperpile.com/c/JWEwig/prHu
https://www.pexels.com/
https://doi.org/10.1101/2022.08.23.504939
http://creativecommons.org/licenses/by-nc-nd/4.0/


RUNNING HEAD: Reward Signature

examine the anticipated reward phase as the motor response and outcome phases were not
designed to be temporally separable. Data were acquired on a Siemens Prisma (TR = 2,000 ms,
TE = 30 ms, FOV = 210 mm, 70 × 70 matrix, yielding a voxel size of 3 × 3 × 3 mm3) acquired as a
partial-head volume in an anteroposterior phase-encoding direction using interleaved slices and
were accessed from OpenNeuro (85) (https://openneuro.org/datasets/ds003242/versions/1.0.0).
Data were preprocessed using fMRIPREP (89) and smoothed using a 6mm FWHM Gaussian
filter. First level single-trial models were run using nltools (90). Each trial was convolved with a
double gamma HRF and additional covariates included a linear trend, the effects of motion
estimated during the realignment step using an expanded set of 24 motion parameters (six
demeaned realignment parameters, their squares, their derivatives, and their squared
derivatives), motion spikes between successive TRs, and global signal-intensity spikes greater
than three SDs above the mean intensity between successive TRs, and a high pass filter of
120s.

Vanderbilt Monetary Incentive Delay
In this study, participants (N = 70, mean age=38.8, sd=15.6, females=51.4%) completed a
probabilistic variant of the monetary incentive delay task (62) designed to assess sensitivity to
varying reward magnitudes and probabilities (expected values). All participants provided
informed consent and this study was approved by the IRB at Vanderbilt University. During the
task, participants were first shown an explicit cue (2000 ms) that indicated one of 12 possible
combinations of reward magnitudes in US dollars ($0, $1, $2, or $3) and probabilities (20%,
50%, or 80%). Following the cue, a brief fixation cross was presented for a variable amount of
time (2000 to 2500 ms) followed by a target (100 to 400 ms) during which the participant was
shown a white star and was required to quickly press a key on a response box. The target
screen was followed by another brief fixation cross (2000 ms minus target duration) before
participants were presented with feedback (2000 ms) that indicated whether their key response
was quick enough. As in Samanez-Larkin et al., (91), the hit and miss rate for individual
participants was manipulated by altering the average duration of the target with an adaptive
timing algorithm that was originally set to the individual’s mean reaction time in a pre-scan
practice, and then followed their performance across the scanned blocks, such that the
individual would successfully hit the target on approximately 66% of the trials for each cue type.
Trials were separated by a variable intertrial interval (2000 to 12000 ms). The task was divided
into 3 runs with 42 trials in each run. At the end of each run, participants were shown the
amount of money earned. The task was incentive compatible; participants were told that they
would be paid 20% of their total earnings from the task. Actual total earnings from participants
varied between $14 and $31 (M = $21.64, SD = $2.27). Data were acquired on a 3T Philips
Intera Achieva scanner using a T2*-weighted gradient echo-planar imaging (EPI) sequence
(TR=2000ms, TE=28ms, FOV=240mm2, voxel size=3 x 3 x 3mm3, flip angle = 79°). Data
preprocessing was performed using fMRIPrep version 1.1.4 and additional voxelwise nuisance
signal removal was performed using publicly-available scripts
(https://github.com/arielletambini/denoiser) to clean the data. Specifically, we denoised the data
for 10 fMRIPrep-derived confounds: CSF, white matter, standardized DVARS, framewise
displacement (over 0.5 mm), and six motion parameters. Functional data were high-pass filtered
with a cutoff of 100 seconds, spatially smoothed with a 5 mm full-width-at-half-maximum

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 24, 2022. ; https://doi.org/10.1101/2022.08.23.504939doi: bioRxiv preprint 

https://paperpile.com/c/JWEwig/SO1i
https://openneuro.org/datasets/ds003242/versions/1.0.0
https://paperpile.com/c/JWEwig/oXkU
https://paperpile.com/c/JWEwig/alaU
https://paperpile.com/c/JWEwig/GFoM
https://paperpile.com/c/JWEwig/z9J2/?noauthor=1
https://github.com/arielletambini/denoiser
https://doi.org/10.1101/2022.08.23.504939
http://creativecommons.org/licenses/by-nc-nd/4.0/


RUNNING HEAD: Reward Signature

(FWHM) Gaussian kernel, and grand-mean intensity normalized. FSL FILM pre-whitening was
carried out for autocorrelation correction. First level models were run for each participant using
FSL FEAT (www.fmrib.ox.ac.uk/fsl) treating the three runs as a second-level fixed effect. Events
were convolved with a double-gamma hemodynamic response function. A general linear model
was fit to the data with (1) a regressor for the mean signal over the duration of the cue for gain
trials ($1, $2, and $3 with any probability), (2) a regressor for the mean signal over the duration
of the cue for neutral trials ($0 with any probability), (3) a regressor for the mean signal over the
duration of the outcome for hits, and (4) a regressor for the mean signal over the duration of the
outcome for misses. We included additional temporal derivative regressors for each regressor of
interest in the GLM.

Rutgers Shared Social Rewards
In this dataset, pairs of participants played a card-guessing game for monetary rewards in which
they shared the earned outcomes of the game with three different partners––a close friend, a
stranger (confederate) they met at the scan session, and a computer (56). All participants
provided informed consent and the study was approved by the IRB at Rutgers University and
the University of Medicine and Dentistry of New Jersey. One participant was scanned (N = 20,
mean age=20.5, sd=2.2, females=50%) while their partners (friend, stranger) took part in the
task behaviorally from the scanner control room. Participant pairs took turns playing or
observing each other guess whether the value of a playing card was higher or lower than the
number 5. Correct guesses resulted in a shared monetary gain of $4 for the pair on a given trial
(i.e., MRI participant + friend; MRI participant + stranger); incorrect guesses resulted in a shared
monetary loss of $2. Imaging data were acquired on a Siemens 3T Allegra head only scanner
using a single shot gradient echo EPI sequence (TR=2000ms, TE=25ms, FOV=192, flip
angle=80°, voxel size=3 x 3 x 3 mm3). Functional data were preprocessed using fMRIprep,
including motion correction, skull-stripping, coregistration to anatomical data, realignment and
normalization. Data were spatially smoothed with a 6mm FWHM Gaussian kernel and first level
analyses were performed using FEAT in FSL (v 6.0.4). A GLM was computed including
regressors modeling the choice (3 regressors) and outcome phases (6 regressors) of the card
game for each partner. Regressors of no interest were included modeling the choice and
outcome phases of missed trials. Confound regressors modeling trial-by-trial framewise
displacement, head motion using realignment parameters, the first six principal components
derived from aCompCor capturing physiological noise and cosine basis functions were included
for each participant in each run. Whole brain beta maps for each regressor of interest in the
outcome phase (i.e., monetary gain/loss with each partner) were computed.

Rutgers Trust Game
In this dataset, participants (N = 24, mean age=21.36, sd=3.67, 14 female) played an iterated
economic trust game with either a close friend, a stranger or a computer on a given trial of the
task while undergoing fMRI (57). All participants provided informed consent and the study was
approved by the IRB at Rutgers University. MRI participants played the role of the investor in a
trust game and were endowed with $1.00 on each trial of the task. They could choose to either
invest (i.e., trust) their money with their partner (i.e., trustee) on a given trial or keep it (i.e.,
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distrust). Trust decisions resulted in the $1.00 investment being multiplied by a factor of three,
such that the trustee received $3.00. The trustee could then decide whether to share half of this
amount ($1.50) back with the investor (i.e., reciprocate) or keep it all for themselves (i.e.,
defect). Unbeknownst to the participants, the trustee’s responses were randomized to
reciprocate or defect with a 50% probability. Here, we focused on the outcome phase of the task
on trials in which the MRI participants chose to invest with the trustees so we could examine
responses to social reward (i.e., reciprocate outcomes) and social loss (i.e., defect outcomes).
Imaging data were collected on a Siemens 3T Magnetom Trio whole-body scanner using a
single shot gradient EPI sequence (TR=2000ms, TE=30ms, FOV=192mm, flip angle=90°, voxel
size=3 x 3 x 3mm3). Data were preprocessed using custom scripts
(https://github.com/rordenlab/spmScripts) for SPM12 and FSL (v5.09; FMRIB). Standard
preprocessing was performed in SPM (motion correction, brain extraction and coregistration,
slice time correction). Motion artifact was removed using ICA-AROMA in FSL(92). Functional
data were smoothed using a 5mm kernel in FSL. We modeled each experimental condition as a
separate boxcar regressor convolved with a double gamma HRF using a general linear model
(GLM). The GLM resulted in whole-brain beta maps for each regressor of interest (i.e.,
reciprocate, defect) in the outcome phase for each partner (friend, stranger, computer). We then
averaged the beta maps across partner types.

Neurosynth Gene Expression
This dataset is from a study that attempted to map genes to cognitive processes based on
shared spatial patterns distributed throughout the brain (50, 51). Gene data comes from the
Allen Human Brain Atlas (AHBA)(52), which is a brain-wide gene expression atlas derived from
transcriptome-wide microarray assessments of human brain tissue from 3,702 samples from 6
postmortem donor brains (http://www.brain-map.org). Several preprocessing steps were
required to produce gene expression maps suitable for comparison with functional
neuroimaging data. First, to increase measurement reliability and reduce the number of
comparisons, the original authors averaged the normalized values over all probesets associated
with each gene (for genes associated with more than one probeset). Second, for each individual
gene and each individual donor, gene expression values across all available samples were
standardized (i.e., z-scored) to remove donor wide variations in mean gene expression levels.
Third, the coordinates of all microarray samples provided in the AHBA dataset were transformed
into MNI152 stereotactic space. The data were spatially smooth by multiplying each point by a
hard sphere of 6 mm radius centered on the microarray locations. Lastly, for each gene, a single
map of brain-wide gene expression was created by averaging across all 6 of the individual
donor maps. To increase reliability, we only included voxels in which gene expression levels
reflected a minimum of 4 samples. All preprocessed gene maps are available on the
Neurosynth website (https://neurosynth.org/). We were specifically interested in comparing the
spatial patterns from the Reward Model with dopamine receptors D1, D2, D3, D4,& D5. We
computed the spatial similarity using Pearson correlations.
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Vanderbilt PET [18F]fallypride
This dataset was taken from a previously published study assessing individual differences in
dopamine D2-like receptor availability and neural representations of subjective value (53). As
part of this study, participants (N=25, mean age=20.9, sd=1.83, 52% female) underwent a PET
scan with the high affinity D2/3 receptor tracer [18F]fallypride. [18 F]fallypride,
(S)-N-[(1-allyl-2-pyrrolidinyl)methyl]−5-(3[18 F]fluoropropyl)−2,3-dimethoxybenzamide, was
produced in the radiochemistry laboratory attached to the PET unit at Vanderbilt University
Medical Center, following synthesis and quality control procedures described in US Food and
Drug Administration IND 47,245. PET data were collected on a GE Discovery STE (DSTE) PET
scanner (General Electric Healthcare, Chicago, IL, USA). The scanner had an axial resolution of
4 mm and in-plane resolution of 4.5 to 5.5 mm FWHM at the center of the field of view. Serial
scan acquisition was started simultaneously with a 5.0 mCi (185 MBq) slow bolus injection of
[18F]fallypride. CT scans were collected for attenuation correction prior to each of the three
emission scans, which together lasted approximately 3.5 hours with two breaks for participant
comfort. The 3 emission scans were merged temporally and motion corrected. Voxelwise
images of receptor availability or binding potential (BPND) were quantified using the simplified
reference tissue model (93, 94) in PMOD Biomedical Imaging Quantification software (PMOD
Technologies, Switzerland) with the putamen as a receptor-rich region and the cerebellum as
the reference region. Binding potential images represent the ratio of the specifically bound
ligand ([18F]fallypride in this study) to its free concentration. All participants provided informed
consent and study procedures were approved by the Institutional Review Board at Vanderbilt
University. Pattern similarity of the Reward Model was computed by taking the Pearson
correlation with each participant's binding potential images. We performed a signed permutation
test with 5,000 iterations using the nltools toolbox (90).

Sweet Taste Dataset
This dataset examined neural responses to carbohydrate rewards (59). Participants (N=15,
mean age=24.33 (3.92), female=47%) consumed 10 differently flavored non-caloric beverages
containing 0.1% (w/v) citric and 0.0078% sucralose dissolved in demineralized water.
Participants selected their 5 favorite flavors and each flavor was paired with a specific nutrient
dose by adding different amounts of maltodextrin (0, 37.5, 75, 112.5, or 150 calories), with the
highest dose equivalent to 12 fl oz can of soda. The five beverages along with a flavorless
control solution was delivered as 1ml over 4s from syringe points with a gustometer system.
Each beverage was delivered 18 times over the course of the imaging session. All participants
provided informed consent on protocols approved by the Yale University School of Medicine
Human Investigation Committee. Imaging data were acquired on a Siemens 3T Tim Trio
scanner using a susceptibility-weighted single-shot echo planar sequence (TR=2000ms,
TE=20ms, flip angle=90°, FOV=220mm, matrix 64 x 64mm, slice thickness 3 mm, 40
interleaved slices). This dataset was accessed from OpenNeuro (85) from
(https://openneuro.org/datasets/ds000229/versions/00001) and preprocessed using fMRIPrep
(89). Data were smoothed using a 6mm FWHM Gaussian kernel. First level single-trial models
were run using nltools (90) using a design matrix that included boxcar regressors for each
experimental condition convolved with a double gamma HRF, a linear trend, the effects of
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motion estimated during the realignment step using an expanded set of 24 motion parameters
(six demeaned realignment parameters, their squares, their derivatives, and their squared
derivatives), motion spikes between successive TRs, and global signal-intensity spikes greater
than three SDs above the mean intensity between successive TRs, and a high pass filter of
120s.

Milkshake Dataset
Participants (N=160, mean age = 15.3, sd=1.1, 51% female) were scanned while completing a
food reward fMRI paradigm(58), in which they viewed cues of two images (glasses of milkshake
and water) that signaled impending delivery of either 0.5ml of milkshake or tasteless solution
delivered using programmable syringe pumps. Participants viewed 50 cues for each stimuli and
consumed 30 trials of each beverage. All participants and parents provided written informed
consent to participate in this project in accordance with the IRB. Imaging data were acquired on
a Siemens Allegra 3T head-only MRI scanner using T2*-weighted gradient single-shot echo
planar imaging sequence (TE=30ms, TR=2000, flip angle=80°, 64 x 64 matrix, 192 x192mm2

FOV, 3 x 3 x 4mm3 voxels). Imaging data were preprocessed and analyzed using SPM12, using
DARTEL normalization, slice timing correction, unwarping using field maps, and smoothed with
a 6mm FWHM Gaussian kernel. First level models included box car regressors for each
experimental condition, realignment parameters, spikes identified using ART. First level contrast
images aggregating runs for each condition were shared by the first and senior authors.

UCLA Balloon Analog Risk Task
We used the Balloon Analog Risk Task (BART) to probe psychological processes related to
making risky decisions. In this task, participants (N=124, mean age=31.58, sd= 8.81, female =
48%) were allowed to pump a series of virtual green (risky) and white (safety) balloons. On each
trial, participants chose to either pump the balloon or cash out and collect their accumulated
earnings for that round. For the risky balloons, a successful pump yielded 5 points and the
participant was given the opportunity to continue to pump or cash out (a maximum of 12 pumps
were possible). An unsuccessful pump led to the balloon exploding and the participant earned
no points for the round. Balloons exploded randomly based on a random draw from a uniform
distribution over numbers of pumps. In the safe condition, participants could pump, but the
balloon never exploded, nor did the participant win any points. This data was collected by the
Consortium for Neuropsychiatric Phenomics as part of a larger study focused on understanding
the dimensional structure of cognitive processing in healthy individuals and those diagnosed
with neuropsychiatric disorders (65). All participants gave written informed consent following
procedures approved by the Institutional Review Boards at UCLA and the Los Angeles County
Department of Mental Health. Imaging data were collected on a Siemens Trio 3T scanner using
EPI sequence (TR=2000ms, TE=30ms, flip angle=90°, matrix=64 x 64, FOV=192mm, 34
oblique slices). Data was accessed from OpenNeuro
(https://openneuro.org/datasets/ds000030/versions/1.0.0) and preprocessed using fMRIPrep
(89). First level single-trial models were run using nltools (90). Data were smoothed using a
6mm FWHM Gaussian kernel. Each trial was convolved with a double gamma HRF and and
additional covariates included a linear trend, the effects of motion estimated during the
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realignment step using an expanded set of 24 motion parameters (six demeaned realignment
parameters, their squares, their derivatives, and their squared derivatives), motion spikes
between successive TRs, and global signal-intensity spikes greater than three SDs above the
mean intensity between successive TRs, and a high pass filter of 120s.

HCP Social Task

In the HCP social task, participants (N=484, mean age = 29.24, 59% female) watched short
video clips of objects (e.g., squares, circles, triangles) either interacting with each other or
moving randomly (67, 95). Participants viewed five 20s clips of each condition, which were
separated by 15s fixation blocks. After each video clip, participants reported whether they
believed the objects were interacting or not. The data acquisition, preprocessing, and first level
models for this task were identical to protocol described in the reward task. The beta estimates
for the average response to each condition were accessed via the OpenAccess AWS S3 bucket
provided by the HCP.

Self Referential

In the self-referential task, participants were Chinese graduate students who recently arrived in
the United States (N=27, mean age=24.11, 48% female). Participants completed a
trait-judgment task (68, 69), in which they made three different types of judgments: a
self-judgment (i.e. does optimistic describe you?), a mother-judgment (i.e., does optimistic
describe your mother?), and a font-judgment (i.e. is this word printed in bold-faced letters?)
condition presented in either Mandarin or English. The current study only used the trials
presented in Mandarin. All participants provided informed consent in accordance with the
guidelines set by the Committee for the Protection of Human Subjects at Dartmouth College.
Imaging data were collected using a Philips Intera Achieva 3T scanner and a 32 channel head
coil using an EPI sequence (TR=2,500ms, TE=35ms, flip angle=90, FOV=240mm, voxel size=3
x 3 x 3 mm3). Data were preprocessed using SPM8, which included slice timing correction,
unwarping, realignment, motion correction, normalization, and spatial smoothing with a 6 mm
FWHM Gaussian kernel. For each participant, the three judgment conditions were modeled
separately in the GLM with a boxcar regressor convolved with a double gamma HRF. Additional
covariates of no interest included a linear trend, and 6 realignment parameters. We used beta
images containing average activity when participants made self-judgments and compared this to
activity elicited by trials in which participants made judgments about the font.

Boulder Pain
In this study (37, 38), participants (N=28, mean age=25.2, sd= 7.4, female = 40%) received
thermal pain stimulation applied to the volar surface of the left forearm and dorsal surface of the
left foot using a TSA-II Neurosensory Analyzer (Medoc Ltd., Chapel Hill, NC) with a 16 mm
Peltier thermode end plate. All participants consented to the experimental procedure which was
approved by the University of Colorado IRB. Three levels of thermal stimulation were applied to
four different locations on both the upper limb (i.e., volar surface of the left forearm) and lower
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limb (i.e., dorsal surface of the left foot) at low (46°C), medium (47°C), and high (48°C)
intensities for 11 seconds while participants were being scanned on a Siemens Tim Trio 3T MRI
scanner. Functional images were acquired with an EPI sequence (TR = 1300 ms, TE = 25 ms,
field of view = 220 mm, 64 x 64 matrix, 3.4 x 3.4 x 3.4 mm voxels, 26 interleaved slices with
ascending acquisition, parallel imaging with an iPAT acceleration of 2). Data were accessed
from NeuroVault (35) (https://neurovault.org/collections/504/ ). All images were preprocessed by
the original authors using SPM8 (Wellcome Trust Centre for Neuroimaging, London, UK) and
custom Matlab functions. Functional images were corrected for slice-acquisition-timing and
motion using SPM8. They were then warped to SPM’s normative atlas using warping
parameters estimated from coregistered, high-resolution structural images, interpolated to 2 × 2
× 2 mm voxels, and smoothed with an 8 mm FWHM Gaussian kernel. Prior to preprocessing of
functional images, global outlier time points (i.e., “spikes”) were identified by computing both the
mean and the standard deviation (across voxels) of values for each image for all slices.
Mahalanobis distances for the matrix of slicewise mean and standard deviation values
(concatenated) were computed for all functional volumes (time), and any values with a
significant χ2 value (corrected for multiple comparisons) were considered outliers (less than 1%
of images were outliers). The output of this procedure was later used as a covariate in the first
level models. First-level GLM analyses were conducted in SPM8. Boxcar regressors, convolved
with the canonical hemodynamic response function, were constructed to model periods for the 2
sec cue presentation, the 5, 7, or 11 sec variable prestimulus fixation period, the 11 sec thermal
stimulation, and the 4 sec rating periods. Additional covariates included a high-pass filter of 224
sec, outliers, and 24 expanded motion parameters (6 realignment, their derivatives, squares,
and squared derivatives). Contrast maps were created for the low, medium, and high stimulation
periods collapsing across cues (i.e., low, medium, and high) and body site (i.e., upper limb and
lower limb).

Pittsburgh IAPS
Participants (N=182, mean age = 42.77, sd = 7.3, female = 52%) were recruited from the
greater Pittsburgh area to complete an affective reappraisal task (38). All participants gave
informed consent in accordance with the guidelines set by the IRB at The University of
Pittsburgh. Participants viewed 15 negative photographs and 15 neutral photographs selected
from the International Affective Picture System (IAPS) (96) and were instructed to either (a)
“look” and maintain their attention to the photos when they came on screen and allow their
emotional reactions to occur naturally or (b) “decrease” and change the way they thought about
the image to feel less negative (see (38, 97) for full task and IAPS stimulus details). Data were
collected on a Siemens 3T Trio TIM whole-body scanner (TR=2000ms, TE=29ms, Flip
Angle=150, FOV=200mm, matrix=64 x 64, 34 3mm slices). The data were accessed via
Neurovault (35) at (https://neurovault.org/collections/503/). Data was preprocessed by the
original authors using SPM8, including unwarping, realignment, coregistration, normalization,
spatial smoothing with a 6 mm FWHM Gaussian kernel and high pass filtering (180 sec cutoff).
Five separate regressors indicating different rating levels (1 to 5) were modeled in the GLM for
each participant as well as 24 covariate regressors modeled movement effects (6 realignment
parameters demeaned, their 1st derivatives, and the squares of these 12 regressors). In this
study, we used single trial responses from only the look condition, which were presented for 7
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seconds and only included participants (N = 93) who rated images either a 1 (neutral) or a 5
(most negative).

HCP Language

In the HCP language task (98), participants (N=482, mean age = 29.24, 59% female) listened to
eight blocks of approximately 30 s stories adapted from Aesop’s stories (5-9 sentences each).
These blocks were interleaved with eight 30s blocks of math problems which included a series
of arithmetic operations that were also presented auditorily. After each block, participants were
instructed to complete a forced choice test demonstrating semantic understanding of the
content. The data acquisition, preprocessing, and first level models for this task were identical to
protocol described in the reward task. The beta estimates for the average response to each
condition were accessed via the OpenAccess AWS S3 bucket provided by the HCP.

HCP Working Memory

In the HCP working memory task, participants (N=493, mean age = 29.24, 59% female)
completed a version of the N-back task (99, 100), in which participants were presented visual
stimuli from four separate categories (i.e., faces, places, tools, and body parts) that have
previously been shown to engage distinct cortical areas. Participants were instructed to
complete two separate tasks across 16 blocks of stimuli (8 blocks per task). Each block
contained 10 images presented for 2.5s each and contained two “targets” and 2-3 “lures”. For
the “2-Back” task, participants were instructed to press a button whenever the current “target”
stimulus was the same one as two images back. The lures were also a repeated image, but
were repeated one or three images back. This task is meant to probe active working memory
maintenance. For the “0-Back” task, participants were presented with a “target” image at the
beginning of the block and were instructed to press a button every time the stimulus is
presented again at the end of the block. This task controls for goal maintenance and motor
responses, but does not contain an active working memory load component. The data
acquisition, preprocessing, and first level models for this task were identical to protocol
described in the reward task. The beta estimates for the average response to each condition
were accessed via the OpenAccess AWS S3 bucket provided by the HCP.

Stop Signal Task
In this study, participants (N=19, mean age=23.75, sd=5.87, 47% female) completed a manual
stop signal task (SST) (Neurovault task001) (101). For the go trials in this task, participants were
asked to press on the right or left button according to whether the letter “T” or “D” was shown on
the screen. For stop trials, an auditory tone cue signaling stop was played after the letter being
shown with some delay (stop-signal delay; SSD), and participants were asked to inhibit their
approaching responses toward the button. Throughout the task, the length of SSD changed
according to whether participants succeeded or failed to inhibit their responses in order to
maintain the accuracy rate at 50%. All participants gave informed consent according to a
procedure approved by the University of California Los Angeles Human Subject Committee.
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Data were collected on a 3T Siemens Allegra MRI scanner using an EPI sequence
(TR=2000ms, TE=30ms, flip angle=90°, matrix 64 x64, FOV=200mm). This dataset was
accessed from NeuroVault (35) from (https://neurovault.org/collections/1807/). Preprocessing
was performed using FSL version 3.3 by the authors of the original study and included
coregistration, realignment, motion correction, denoising using MELODIC, normalization, spatial
smoothing with a 5 mm FWHM Gaussian kernel, and high-pass filtering with a 66s cutoff. Each
condition (i.e., go, inhibition-success, inhibition-failure, and nuisance events) were modeled as a
separate boxcar regressor and convolved with a double gamma HRF using a GLM. Temporal
derivatives and 6 motion parameters were included as covariates.

MIT Deprivation Task
This study investigated the neural signals of social isolation (41). Participants (N=30, mean
age=26.75, sd=5.6, female=73%) completed three separate scanning sessions (i.e., baseline
condition, food deprivation, and social isolation). Across all three sessions, participants were
scanned while they completed an image viewing paradigm, which included viewing 54 images
within three separate conditions. In the social condition, participants viewed groups of
individuals as they meet, talk, laugh, smile, etc. In the food condition, participants viewed
different kinds of highly palatable foods such as cake, pizza, chocolate, etc. In the control
condition, participants viewed images of attractive flowers. On each trial, participants saw a
single photograph and 3-5 word verbal description, for 5 sec. The combination of visual and
verbal cues was intended to maximize deep semantic processing of the relevant attributes. In
the food deprivation scanning session, participants were asked to abstain from consuming any
food or drinks/coffee (except water) for 10 hours before the fMRI session. They could engage in
any social or non-social activities they wanted to but were asked to abstain from exercising in
order to avoid exhaustion. In the social isolation condition, participants remained in a room for
10 hours and were not able to interact socially for the duration of the isolation. Participants were
provided with puzzles, Sudoku, coloring pages, non-social games (e.g., Tetris, Bubble Shooter,
etc.) and drawing/writing supplies. Participants were able to eat any food they wanted during
isolation. In the baseline condition, participants did not undergo any experimental manipulation
before scanning. All participants consented to participate in the experiment in accordance with
MIT’s institutional review board.

The stimuli for the image viewing task were tailored to each individual's preferred foods and
modes of social interaction. During the initial screening, participants were asked to list their top
ten favorite foods and social activities. Stock photographs illustrating these specific foods and
activities were selected from a large public database (https://www.pexels.com/), and then verbal
labels were added using the participant’s own descriptions. Food descriptions included “fluffy
syrup-drenched pancakes”, “creamy cheesy macaroni”, “refreshing mixed fruit salad”, and
“yummy vanilla cake with sprinkles”. Social descriptions included “chatting and laughing
together”, “joking around with friends”, “supporting each other through workouts”, “enjoying a
conversation together.” Social pictures were all matched for gender of participants (i.e., for a
male participant, all social photographs included at least one man). Control trials presented
attractive photographs of flowers accompanied by positive valence verbal descriptions.
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Data were acquired on a Siemens Prisma (TR = 2,000 ms, TE = 30 ms, FOV = 210 mm, 70 × 70
matrix, yielding a voxel size of 3 × 3 × 3 mm3) acquired as a partial-head volume in an
anteroposterior phase-encoding direction using interleaved slices and were accessed from
OpenNeuro (85) (https://openneuro.org/datasets/ds003242/versions/1.0.0). Data were
preprocessed using fMRIPREP (89) and smoothed using a 6mm FWHM Gaussian filter. First
level single-trial models were run using nltools (90). Each trial was convolved with a double
gamma HRF and additional covariates included a linear trend, the effects of motion estimated
during the realignment step using an expanded set of 24 motion parameters (six demeaned
realignment parameters, their squares, their derivatives, and their squared derivatives), motion
spikes between successive TRs, and global signal-intensity spikes greater than three SDs
above the mean intensity between successive TRs, and a high pass filter of 120s.

Mixed Gamble Task
This study investigated the neural correlates of loss aversion while individuals decided whether
to accept or reject gambles that offered a 50% chance of gaining or losing money. All
participants were free of neurological and psychiatric history and gave informed consent to
participate according to a protocol approved by the University of California, Los Angeles
Institutional Review Board. Participants (N=16, mean age=22, sd=2.9, 56% female) made
decisions across 85 trials that varied potential gain amounts between $10 and $40 and potential
losses between $5 and $20 in order to create a variety of situations at and around the point
where the potential gain is twice the loss. Gains and losses varied across trials, but gains were
designed to be twice as high as losses. This was designed to create a range of subject
reactions from strong rejection to strong acceptance. Participants were paid at the end of the
experiment for one randomly selected trial to ensure incentive compatibility. Data were acquired
using a 3T Siemens AG Allegra MRI scanner using an EPI sequence (TR=2000ms, TE=30ms,
flip angle=90, FOV=200mm, matrix=64 x 64). Data were accessed from OpenNeuro
(https://openneuro.org/datasets/ds000005/versions/00001) and preprocessed using fMRIPrep
(89). Data were smoothed using a 6mm FWHM Gaussian kernel. First level single-trial models
were run using nltools (90). Each trial was convolved with a double gamma HRF and and
additional covariates included a linear trend, the effects of motion estimated during the
realignment step using an expanded set of 24 motion parameters (six demeaned realignment
parameters, their squares, their derivatives, and their squared derivatives), motion spikes
between successive TRs, and global signal-intensity spikes greater than three SDs above the
mean intensity between successive TRs, and a high pass filter of 120s. We computed the
pattern similarity between the Reward Model and each trial for each participant using Pearson
correlations.

Naturalistic Viewing Task (FNL)
In this study, participants (N=35, mean age = 19.0, sd=1.07, 74% female) were recruited to
watch the pilot episode of the character driven television drama, Friday Night Lights (FNL) while
being continuously scanned with fMRI (4). All participants provided informed consent in
accordance with a protocol approved by the Committee for the Protection of Human Subjects at
Dartmouth College. Data were acquired using a 3T Siemens Magnetom Prisma scanner
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(Siemens, Erlangen, Germany) with a 32-channel head coil (TR/TE = 2000/25 ms, flip angle =
75°, resolution = 3 mm3 isotropic voxels, matrix size = 80 by 80, and FOV = 240 mm by 240
mm, GRAPPA=2) for 45 minutes (1364 TRs). All data are available on OpenNeuro
(https://openneuro.org/datasets/ds003521/versions/1.0.0). Data underwent a standard
preprocessing pipeline https://github.com/cosanlab/cosanlab_preproc, which included motion
correction, nonlinear spatial normalization, spatial smoothing using a 6mm FWHM Gaussian
kernel. Data were denoised using a voxel-wise GLM to remove variance associated with the
mean, linear, and quadratic trends, mean activity from a cerebral spinal fluid mask, the effects of
motion estimated during the realignment step using an expanded set of 24 motion parameters
(six demeaned realignment parameters, their squares, their derivatives, and their squared
derivatives), motion spikes between successive TRs, and global signal-intensity spikes greater
than three SDs above the mean intensity between successive TRs. We applied the Reward
Model to the entire preprocessed and denoised time series for each participant.

Facial Expressions
Participants (N=20, mean age=18.9, sd=0.91, 65% female) were recruited from the Department
of Psychological Brain Sciences at Dartmouth College to watch the first four episodes of the first
season of FNL over two separate 2-hour sessions. Here, we report results from episode one. All
participants provided informed consent in accordance with a protocol approved by the
Committee for the Protection of Human Subjects at Dartmouth College. Facial expressions
during the experiment were monitored using GoPro HERO 4 cameras recording at 120 frames/s
at 1920 by 1080 resolution. Each camera was positioned using a custom facecam headsets
developed by our group (76). This approach is invariant to head motion and minimizes many
types of facial occlusions. Recorded videos were then temporally aligned to the episodes by
minimizing differences in audio intensity using our open source Python FaceSync toolbox
version 0.0.8 (76). Facial behavioral features consisting of 20 facial AUs, a standard for
measuring facial muscle movement based on the Facial Action Coding System (77), were
extracted using FACET® (102) accessed through the iMotions biometric research platform. Data
were downsampled to 0.5 Hz. We used our Python Facial Expression Analysis Toolbox
(Py-Feat) version 0.4 to visualize the facial morphometry of our Face Model using min-max
feature scaling along the interval of [0,1] (78). See the original paper for full details about image
acquisition, preprocessing, and denoising procedures (4, 103). Data are available to be
downloaded from OSF (https://osf.io/f9gyd/).

Model Training
We trained our model using data from the Delgado Gambling task collected as part of the
Human Connectome Project made available via an AWS S3 bucket (N=490). We randomly
selected 80% of the participants to serve as training data (N=392) and 20% of participants to
serve as a separate hold out test dataset (N=98). For the training data, we tried to remove as
much individual subject variability as possible by subtracting the subject mean out of each map
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and standardizing the data within each image. We trained a linear Support Vector Machine
(SVM) to classify reward trials from punishment trials using 5-fold cross-validation procedure
where data from the same subject was held out together. This allowed us to estimate the
generalizability of this model to new participants that have been preprocessed in a similar
manner. We performed a more rigorous validation using the separate hold out set. Unlike the
cross-validated analyses, we used the full training dataset to train the model (n=392) and only
tested the model once on the hold out test dataset (n=98).

To establish the face validity of our model, we used a parametric bootstrap to identify which
voxels most reliably contributed to the classification, which involved retraining the model 5,000
times after randomly sampling participants with replacement and thresholding at FDR q <
0.0001. This procedure is purely for visualization to establish the face validity of the model and
not used for spatial feature selection (44).

This bootstrap procedure also allowed us to to estimate the consistency of the spatial pattern
across different random samples of the data. We computed the pairwise spatial similarity of the
whole-brain pattern estimated across each bootstrap iteration and observed a high level of
spatial consistency, r=0.93, p < 0.001 (38). While this procedure allows us to estimate the
variation in the model weights across different subsamples of participants from the full training
dataset, it is important to note that this estimate is likely slightly inflated compared to a more
traditional reliability estimate as the data are not fully independent across bootstraps.

Model Testing

Forced Choice Accuracy
To evaluate the convergent and discriminant validity of the Reward Model to other psychological
constructs, we tested our reward classification models using forced choice accuracy tests.
Forced choice tests compare the relative spatial similarity of each brain map to the Reward
Model within the same participant using Pearson correlations and then select the map with the
overall highest similarity. We performed hypothesis tests using a permutation approach, by
randomly permuting the order of the images for each participant 10,000 times to generate a null
distribution, and count the number of instances in which our average accuracy across
participants exceeds this null distribution. We were only interested in whether the target
condition was significantly greater than the reference condition, so we report one-tailed tests.
Forced choice tests are well suited for fMRI because they do not require signals to be on the
same measurement scale across individuals or scanners (30) and have an interesting property
in that they are equivalent to sensitivity, specificity, and area under the ROC curve (AUC).

Virtual Lesion
We performed a virtual lesion analysis (38) to determine how weights in regions outside the core
reward network contributed to the overall prediction. This required training a new predictive
model after performing spatial feature selection to remove the contribution of voxels outside
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regions traditionally considered to be involved in reward processing. We identified voxels that
are frequently implied by the term “reward” using Neurosynth (28). Neurosynth uses a database
containing 14,371 neuroimaging studies and computes a bag of words to represent the
frequency of words used in each paper. It uses a naive bayes classifier with a uniform prior to
determine the likelihood of the term given the pattern of activations reported in the paper. We
created a binary mask using the neurosynth reverse inference maps thresholded at FDR 0.01.
We further smoothed the mask by applying a 5mm Gaussian kernel and thresholded the map to
include voxels that exceeded a z-score of 3.5. These values were arbitrarily selected and
produce a mask that includes contiguous core regions of the reward network (e.g., ventral
striatum, SN/VTA, vmPFC). We used this mask to select 7,322 voxels from the 238,955
included in the whole brain model and retrained the Reward Model using the identical procedure
described above. Importantly, this procedure removes the influence of regions that may be
peripheral to reward processing (e.g., sensory cortex). We next performed nested model
comparisons of the predictions of the full whole-brain model compared to the sparse masked
model in order to determine the impact of performing a virtual lesion or ablating weights outside
core reward regions. This entailed using a mixed logistic regression using the pymer python
wrapper (104) around the R lme4 package (105) to predict the classification accuracy of each
subject based on the type of model indicated by a dummy code. This analysis was performed
separately for each dataset. Participant IDs were used as a random intercept and slope. The
results of this virtual lesion analysis for each dataset using forced choice accuracy are reported
in Table S1. Positive z-values indicate that the whole-brain model yielded a higher accuracy
relative to the nested sparse model, while negative values indicate that the accuracy increased
in the sparse model.

We openly share both the whole-brain and the sparse Reward Models and recommend that
these models be used interchangeably depending on the researcher’s goals. The whole-brain
model appears to be more sensitive to detecting rewards when the task is similar to the original
training task. The sparse model appears to be more specific, but may miss important
information represented in other cortical regions.

Loss Aversion
We used a linear model of prospect theory to estimate each participant’s individual
loss-aversion parameter . The original Prospect Theory model proposed a nonlinear weighting
function (79), here we simplify the model by assuming equal decision weights for a 0.5

probability to gain or lose money as proposed in (42), . We use a mixed effects
logistic regression using lme4 (105) using the pymer python wrapper (104) to predict decisions
to accept or reject the gamble based on the possible gains or losses for that trial treating
participant IDs as a random intercept and slope. We used the subject level BLUPs from this
model and to estimate . We used a similar approach to estimate each participant’s
neural loss-aversion parameter . We computed the pattern similarity of our Reward Model with
single trial beta estimates of each trial, and then predicted variation in the Reward Model
predictions using the magnitude of loss and gains associated with each trial. Similar to the
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behavioral estimation , we estimated each individual participant’s loss aversion parameter
using the subject level BLUPs from the regression model and . We used a
Spearman rank correlation to estimate the magnitude of the relationship between the
behavior and brain loss-aversion parameters and a permutation test with 10,000 to perform a
hypothesis test. We note that and estimated from predicting the Reward Model
pattern similarity were very small, so the values we report in the results section are standardized
estimates.

Intersubject Correlation (ISC)
For the naturalistic image viewing task, we used intersubject correlation (ISC) to examine the
reliability of neural dynamics in response to a dynamic stimulus across individuals (74, 75, 106).
We computed the pairwise correlation between participants’ predicted time series after taking
the spatial similarity with each image and the Reward Model. We computed the mean of the
lower triangle of the subject by subject-by -subject correlation matrix after performing a Fisher R
to Z transformation and then inverted the transformation after computing the mean. To perform
inferences if there was an overall significant level of synchronization, we used the subject-wise
bootstrap procedure proposed by (107) with 5,000 bootstraps using the nltools software
package (90). See (75, 108) for a tutorial on ISC.

Face Expression Model
To create the facial expression model, we used the standardized average predicted AU
response that was downsampled to 0.5Hz to match the neuroimaging data. We used a mixed
effects regression model using the pymer4 toolbox (104) to predict the subject-specific pattern
similarity time series after applying the Reward Model to the naturalistic FNL fMRI data. We
used min-max feature scaling to scale the estimates from the regression model to lie on
the interval of [0,1]. We visualized the weights of the model using the py-feat toolbox (78). To
assess the predictive accuracy of the model, we used 5-fold cross-validation where data from
the same subject was held out together to train the model on a subset of the data and then
assessed the ability of the model to account for changes in each individual fMRI participants’
predicted reward responses using a Spearman rank correlation. We used a sign permutation
test with 5,000 permutations to perform inference over participants. This procedure provides an
unbiased estimate of how well the model could account for the fluctuating dynamics of the
Reward Model predictions over the sequence of events in the final football scene in the
television episode.
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